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Depth of focus: what is it

http://www.elementsofcinema.com/cinematography/depth-of-field.html

Depth of focus

http://www.elementsofcinema.com/cinematography/depth-of-field.html
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(5.2 prefactor as in Tsai et al., 2016)

5 keV for 20 nm resolution
DOF = 8.7 µm

[1] E. H. R. Tsai, I. Usov, A. Diaz, A. Menzel, and M. Guizar-Sicairos, "X-ray ptychography with extended depth of field," Opt Express 24, 29089–20 (2016).

In-sample diffraction must be accounted for when t > DOF
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ψ0 ψ1 ψ2 ψ3 ψ4 ψ5 ψe

Δz

PΔz

[1] J. M. Cowley and A. F. Moodie, "The scattering of electrons by atoms and crystals. I. A new theoretical approach," Acta Cryst (1957). Q10, 609-
619 [doi:10.1107/S0365110X57002194] 10, 1–11 (1957).

Fresnel (near-field) propagation

Multislice propagation

The forward model
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L1 norm • Object sparsity

• Noise and artifact suppression

Total variation • Object gradient sparsity

• Noise and artifact suppression

Non-

negativity

• Solution stabilization

• Works as long as one avoids anomalous 

dispersion at an absorption edge

Finite support 

and shrink-

wrap

• For fullfield holography only

• Initialized by thresholding conventional 

reconstruction results

• Shrunk by taking out low-value voxels per 

several iterations

[1] Tibshirani, R. (2011). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(3), 273–282.

[2] Horn, R. A. and Johnson, C. R. "Norms for Vectors and Matrices." Ch. 5 in Matrix Analysis. Cambridge, England: Cambridge University Press, 1990.

[3] Sidky, E. Y., & Pan, X. (2008). Physics in Medicine and Biology, 53(17), 4777–4807. 

[4] Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A., Howells, M. R., et al. (2003). Physical Review B, 68(14), 843–4. 

Just something else…



5

It’s all about gradient
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Automatic differentiation: more than machine learning
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Automatic differentiation: more than machine learning
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[1] M. Abadi et al., "Tensorflow: Large-scale machine learning on heterogeneous distributed systems," arXiv cs.DC, arXiv:1603.04467 (2016).
[2] D. Maclaurin, "Modeling, Inference and Optimization with Composable Differentiable Procedures,” (PhD thesis), Harvard University (2014).
[3] Nashed, Y. S. G., Peterka, T., Deng, J., & Jacobsen, C. (2017). Procedia Computer Science, 108, 404–414. 

Autograd

(Has been applied for ptychography by Nashed et al.)

Automatic differentiation: more than machine learning
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Divide projection data into minibatches to fit in memory

Automatic differentiation: more than machine learning

Worker 1

Minibatch
1
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Minibatch
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Gradient

Minibatch
5

Gradient

Worker 3

Minibatch
3

Gradient

Minibatch
6

Gradient

Averaged 
gradient

Divide projection data into minibatches to fit in memory
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Divide projection data into minibatches to fit in memory

Automatic differentiation: more than machine learning

Divide projection data into minibatches to fit in memory
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Automatic differentiation: more than machine learning

Taylor Childers

Corey Adams
θ1 θ2 θ3

spot j

Node 1 Node 2 Node 3 ……



13

Automatic differentiation: more than machine learning

Taylor Childers

Corey Adams
θ1 θ2 θ3

Node 1 Node 2 Node 3 ……
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Automatic differentiation: more than machine learning

Autograd
MPI4py

For FFT-heavy applications on KNL nodes

FFTs

Performance 
tracing

Gradient 
calculation

Building/optimizing graph 
and running conversation 

operations
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Pixel size (nm) 1

Energy (eV) 5000

Depth of focus (nm) 21.77

Largest sample thickness (nm) 200

Sample-detector distance (nm) 1000

Object grid size 2563

# of projections 500

# of diffraction spots in ptychography 23×23

Si

TiO2

Test case 1: a designed sample
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True: simulated object
360°: full-filed reconstruction with 360° projection data
180°: full-filed reconstruction with 180° projection data
Ptycho: ptychography reconstruction with 360° projection data
ER+FBP: reconstruction with conventional CDI and tomography

(a)

(b)

(c)

(e)

(d)

YZ-cross section Proj. (front) Proj. (top) 3D (top)
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Pixel size (nm) 1

Energy (eV) 5000

Depth of focus (nm) 21.77

Largest sample thickness (nm) 200

Sample-detector distance (nm) 1000

Object grid size 2563

# of projections 500

# of diffraction spots in ptychography 23×23

Platform Cooley

Fullfield # of threads 4

Fullfield time 5 h

Ptychography # of threads 20

Ptychography time 45.9 h

Test case 1: a designed sample
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Human adhesin complex originally acquired using EM; data retrieved from EM databank.

(a) True

(b) Recon.

(c) FBP

Pixel size (nm) 0.67
Energy (eV) 800
Depth of focus (nm) 1.56
Largest sample thickness (nm) 30
Object grid size 643

Num. of projections 500
# of diffraction spots in ptychography 23×23

Test case 2: a semi-experimental protein molecule
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Pixel size (nm) 0.67

Energy (eV) 800

Depth of focus (nm) 1.56

Largest sample thickness (nm) 30

Object grid size 643

Num. of projections 500

# of diffraction spots in ptycho. 23×23
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(a) True object (c) Ptychography reconstruction

0 10 20 30 40 50 60 0 10 20 30 40 50 60
0.00.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

δ 
va

lu
e 

(×
10

)

0 10 20 30 40 50 60
0.0

0.2

0.4

0.8

1.0

1.2

(b) Full-field reconstruction
1.4

0.6

δ 
va

lu
e 

(×
10

-5
)

Full-field reconstruction throws away halos, while ptychography
preserves it.

Fullfield platform Workstation 
(GPU)

Fullfield # of threads 4

Fullfield time 0.15 h

Ptychography platform Cooley

Ptycho. # of threads 20

Ptychography time 1.45 h

Test case 2: a semi-experimental protein molecule
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ψ0 ψ1 ψ2 ψ3 ψ4 ψ5 ψe
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PΔz

Autograd

1 cm

ψ0 ψ1 ψ2 ψ3 ψ4 ψ5 ψe

Δz

PΔz

......

Convolutional neural network

Finite difference propagation

Point projection

Tomosaic

Beyond DOF

O(N)

Future perspectives

at δ ≈ 100 nm
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